Unified Description of Accretion Flows around Black Holes
نویسندگان
چکیده
We provide a uni ed description of thermal equilibria of black hole accretion disks, including the newly-discovered advection-dominated solutions. We classify the solutions on the basis of optical depth and importance of advection cooling. We demonstrate that only four physically distinct topological types of equilibria exist. Two of the types correspond to optically thin and optically thick equilibria, while the other two types are distinguished by whether advection is negligible or dominant. A stable Shakura-Sunyaev disk exists only for accretion rates _ M below a certain maximum. However, there is a critical viscosity parameter crit, which is a function of radius, such that for > crit advection-dominated solutions exist for all _ M . Even when < crit, the advection-dominated solutions are available for a wide range of _ M except for a gap around the Eddington rate. We therefore suggest that advection-dominated ows may be more common than standard thin disks in black hole systems. For certain ranges of radii and _ M , no stable steady state solution is possible. In these cases, we suggest that limit cycle behavior may occur, leading to variability. Subject headings: accretion, accretion disks | instabilities
منابع مشابه
Calculation of the relativistic bulk tensor and shear tensor of relativistic accretion flows in the Kerr metric.
In this paper, we calculate the relativistic bulk tensor and shear tensor of the relativistic accretion ows in the Kerr metric, overall and without any approximation. We obtain the relations of all components of the relativistic bulk and shear tensor in terms of components of four-velocity and its derivatives, Christoffel symbols and metric components in the BLF. Then, these components are deri...
متن کاملNumerical models of rotating accretion flows around black holes
Numerical, two-dimensional, time-dependent hydrodynamical models of geometrically thick accretion discs around black holes are presented. Accretion flows with non-effective radiation cooling (ADAFs) can be both convectively stable or unstable depending on the value of the viscosity parameter α. The high viscosity flows (α ≃ 1) are stable and have a strong equatorial inflow and bipolar outflows....
متن کاملRadiative Shocks in Rotating Accretion Flows around Black Holes
It is well known that the rotating accretion flows around black holes form shock waves close to the black holes, after the flow passes through the outer sonic point and can be virtually stopped by the centrifugal force. We examine numerically such shock waves in 1D and 2D accretion flows, taking account of the cooling and heating of gas and the radiation transport. The numerical results show th...
متن کاملA ug 1 99 8 A “ horizon adapted ” approach to the study of relativistic accretion flows onto rotating black holes
We present a new geometrical approach to the study of accretion flows onto rotating black holes. Instead of Boyer-Lindquist coordinates, the standard choice in all existing numerical simulations in the literature, we employ the simplest example of a horizon adapted coordinate system, the Kerr-Schild coordinates. This choice eliminates unphysical divergent behavior at the event horizon. Computat...
متن کاملQuasi-Periodic Oscillations in Numerical Simulation of Accretion Flows Around Black Holes
We present results of several numerical simulations of two dimensional axisymmetric accretion flows around black holes using the Smoothed Particle Hydrodynamics (SPH). We consider both stellar black holes and as well as supermassive black holes. We assume bremsstrahlung to be the only source of cooling as it is simpler to implement in numerical simulations. We observe that due to both radial an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995